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The science of statistics is increasingly employed in all fields
of medicine. Statistical techniques are used not only by
academics and clinicians directly involved in medical
research but also by advocates of evidence-based medicine,
who must synthesise results from many different sources to
reach useful conclusions. Because of this widespread use, it
is important that all those involved in research or the
management of patients have a sound grasp of at least the
basics of statistical methods. Unfortunately, in practice this is
often not true, with many relying on distant memories of
poorly understood lectures from undergraduate courses.

In response to this, Critical Care is launching a series of
articles aimed at providing a simple introduction and/or
refresher to some of the more common tools and ideas used in
medical statistics. The articles are aimed at a non-specialist
audience and will keep algebra and technical language to a
minimum. Although some of the topics covered in this series
will probably be familiar, it is hoped that there will still be useful
lessons to be learned, for example the underlying assumptions
of a hypothesis test that were not fully appreciated, or some
previously unrecognised confusion between terms.

The first article, presented in this issue, covers the presentation
and summary of data. It is unlikely that the material covered by
this article will be entirely new to any reader but it is included
as a simple introduction to some of the ideas and philosophies

that will be built upon in subsequent articles. Topics to be
covered in the series include: standard errors and confidence
intervals; hypothesis testing and errors; power calculations;
measures of disease; parametric and non-parametric tests;
simple regression; and analysis of survival data. Ideally the
series will evolve to meet the needs of Critical Care readers,
and you are encouraged to suggest additional topics that you
would like to see covered in the future.

It is vital that the quality of medical research continues to
improve and that readers develop a critical eye when
considering evidence from published reports. The conduct of
badly designed, under-powered and inappropriately analysed
studies is not only an indefensible waste of precious
resources but is also highly unethical. Unfortunately such
research is all too common, and every effort should be made
to prevent these situations from arising. Statistical statements
can enlighten or mislead depending on how well they are
understood, and individuals have a responsibility to ensure
that their knowledge is sufficient for their needs. It is hoped
that this series will inform readers but also that it will
stimulate more thought and investigation as to the most
appropriate statistical methods to use and the theory and
assumptions behind them.

This series does not claim to be a complete course in
medical statistics. There are many useful introductory texts
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Abstract

Statistics is increasingly used in all fields of medicine but is often poorly understood and incorrectly
applied. Critical Care is therefore launching a series of articles aimed at providing a simple introduction
or refresher to some of the more commonly used statistical tools and ideas. This series does not aim to
be an exhaustive review of medical statistics but rather a starting point to inform readers and stimulate
more thought and investigation as to the most appropriate statistical methods to use and the theory
and assumptions behind them.
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that cover the ideas presented in this series, and more, in
considerably greater detail [1–4]. However, even these might
frequently not be sufficient and it is vital that researchers
recognise their own limitations and seek professional advice
whenever it is needed, if only for reassurance. Medical
statistics is a scientific discipline in its own right and a
medical statistician fully achieves that role only after years of
training and practical experience. Most academic
departments, and also many clinical departments, include
properly qualified medical statisticians and they should be
consulted as early as possible in the research process.
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Data description is a vital part of any research project and
should not be ignored in the rush to start testing hypothe-
ses. There are many reasons for this important process,
such as gaining familiarity with the data, looking for unusu-
ally high or low values (outliers) and checking the assump-
tions required for statistical testing. The two most
common types of data are qualitative and quantitative
(Fig. 1). Qualitative data fall into two categories:
unordered qualitative data, such as ventilatory support
(none, non-invasive, intermittent positive-pressure ventila-
tion, oscillatory); and ordered qualitative data, such as
severity of disease (mild, moderate, severe). Quantitative
data are numerical and fall into two categories: discrete
quantitative data, such as the number of days spent in
intensive care; and continuous quantitative data, such as
blood pressure or haemoglobin concentrations. Tables are
a useful way of describing both qualitative and grouped
quantitative data and there are also many types of graph
that provide a convenient summary. Qualitative data are
commonly described using bar or pie charts, whereas
quantitative data can be represented using histograms or
box and whisker plots.

Tables and graphs provide a convenient simple picture of a
set of data (dataset), but it is often necessary to further sum-
marize quantitative data, for example for hypothesis testing.
The two most important elements of a dataset are its location
(where on average the data lie) and its variability (the extent
to which individual data values deviate from the location).
There are several different measures of location and variability
that can be calculated, and the choice of which to use
depends on individual circumstances.

Measuring location
Mean
The mean is the most well known average value. It is calcu-
lated by summing all of the values in a dataset and dividing
them by the total number of values. The algebraic notation for
the mean of a set of n values (X1, X2,..., Xn) is:

(1)

where            is the mathematical notation for the sum of all 
values (X1, X2,…, Xn). In other words:
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Abstract

The present review is the first in an ongoing guide to medical statistics, using specific examples from
intensive care. The first step in any analysis is to describe and summarize the data. As well as
becoming familiar with the data, this is also an opportunity to look for unusually high or low values
(outliers), to check the assumptions required for statistical tests, and to decide the best way to
categorize the data if this is necessary. In addition to tables and graphs, summary values are a
convenient way to summarize large amounts of information. This review introduces some of these
measures. It describes and gives examples of qualitative data (unordered and ordered) and quantitative
data (discrete and continuous); how these types of data can be represented figuratively; the two
important features of a quantitative dataset (location and variability); the measures of location (mean,
median and mode); the measures of variability (range, interquartile range, standard deviation and
variance); common distributions of clinical data; and simple transformations of positively skewed data. 
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Of all the measures of location, the mean is the most com-
monly used because it is easily understood and has useful
mathematical properties that make it convenient for use in
many statistical contexts. It is strongly influenced by extreme
values (outliers), however, and is most representative when
the data are symmetrically distributed (see below).

Median

The median is the central value when all observations are
sorted in order. If there is an odd number of observations then
it is simply the middle value; if there is an even number of
observations then it is the average of the middle two. The
median does not have the beneficial mathematical properties
of the mean. However, it is not generally influenced by extreme
values (outliers), and as a result it is particularly useful in situa-
tions where there are unusually low or high values that would
render the mean unrepresentative of the data.

Mode

The mode is simply the most commonly occurring value in the
data. It is not generally used because it is often not represen-
tative of the data, particularly when the dataset is small.

Example of calculating location

To see how these quantities are calculated in practise, con-
sider the data shown in Table 1. These are haemoglobin con-
centration measurements taken from 48 patients on admission
to an intensive care unit, listed here in ascending order.

The first step in exploring these data is to construct a histo-
gram to illustrate the shape of the distribution. Rather than
plot the frequency of each value separately (e.g. one patient
with haemoglobin 5.4 g/dl, two patients with haemoglobin
6.4 g/dl, one patient with haemoglobin 7.0 g/dl, and so on),
continuous data are generally grouped or categorized before

plotting (e.g. one patient with haemoglobin between 5.0 and
5.9 g/dl, two patients with haemoglobin between 6.0 and
6.9 g/dl, four patients with haemoglobin between 7.0 and
7.9 g/dl, and so on). These categories can be defined in any
way and need not necessarily be of the same width,
although it is generally more convenient to have equally sized
groups. However, the categories must be exhaustive (the
categories must cover the full range of values in the dataset)
and exclusive (there should be no overlap between cate-
gories). Therefore, if one category ends with 6.9 g/dl then
the next must begin with 7.0 g/dl rather than 6.9 g/dl. Fig. 2
shows the data in Table 1 grouped into 1 g/dl categories
(5.0–5.9, 6.0–6.9,…, 14.0–14.9 g/dl).

Fig. 2 shows that the data are roughly symmetrically distrib-
uted; more common values are clustered around a peak in
the middle of the distribution, with decreasing numbers of
smaller and larger values on either side. The mean, median
and mode of these data are shown in Table 2.

Notice that the mean and the median are similar. This is
because the data are approximately symmetrical. In
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Figure 1

Types of data. ICU = intensive care unit.

Data

Qualitative Quantitive

Frequency tables Frequency tables

Bar/pie charts Histograms/box and whisker plots

Unordered Ordered Discrete Continuous

Ventilatory support Severity of illness Days in ICU Blood pressure

Main types:

In tables, shown as:

Graphically shown as:

Types:

Examples:

Table 1

Haemoglobin (g/dl) from 48 intensive care patients

5.4 8.2 9.3 9.9 10.5 11.9

6.4 8.3 9.4 9.9 10.5 12.3

6.4 8.3 9.4 9.9 10.6 12.6

7.0 8.6 9.4 10.1 10.8 12.7

7.1 8.8 9.4 10.3 10.8 13.0

7.3 8.9 9.5 10.3 11.3 13.3

7.7 9.1 9.7 10.4 11.7 14.0

8.1 9.3 9.7 10.4 11.7 14.1
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general, the mean, median and mode will be similar in a
dataset that has a symmetrical distribution with a single
peak, such as that shown in Fig. 2. However, the dataset
presented here is rather small and so the mode is not such
a good measure of location.

Measuring variability
Range
As with location, there are a number of different measures of
variability. The simplest of these is probably the range, which
is the difference between the largest and smallest observation
in the dataset. The disadvantage of this measure is that it is
based on only two of the observations and may not be repre-
sentative of the whole dataset, particularly if there are outliers.
In addition, it gives no information regarding how the data are
distributed between the two extremes.

Interquartile range

An alternative to the range is the interquartile range. Quartiles
are calculated in a similar way to the median; the median
splits a dataset into two equally sized groups, tertiles split the
data into three (approximately) equally sized groups, quartiles
into four, quintiles into five, and so on. The interquartile range
is the range between the bottom and top quartiles, and indi-
cates where the middle 50% of the data lie. Like the median,
the interquartile range is not influenced by unusually high or
low values and may be particularly useful when data are not
symmetrically distributed. Ranges based on alternative subdi-
visions of the data can also be calculated; for example, if the
data are split into deciles, 80% of the data will lie between
the bottom and top deciles and so on.

Standard deviation

The standard deviation is a measure of the degree to which
individual observations in a dataset deviate from the mean

value. Broadly, it is the average deviation from the mean
across all observations. It is calculated by squaring the differ-
ence of each individual observation from the mean (squared
to remove any negative differences), adding them together,
dividing by the total number of observations minus 1, and
taking the square root of the result.

Algebraically the standard deviation for a set of n values (X1,
X2,…, Xn} is written as follows:

(2)

where

and    is the mean described above (Eqn 1). It can be seen
from this expression that if individual observations are all
close to the mean then the standard deviation will be small (at
the extreme, if all observations were equal to the mean then
the standard deviation would be zero). Conversely, if the
observations vary widely then the standard deviation will be
substantially larger. The standard deviation summarizes a
great deal of information in one number and, like the mean,
has useful mathematical properties.

Variance

Another measure of variability that may be encountered is the
variance. This is simply the square of the standard deviation:

(3)

The variance is not generally used in data description but is
central to analysis of variance (covered in a subsequent
review in this series).

Figure 2

Histogram of admission haemoglobin measurements from 48 intensive
care patients.
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Table 2

Mean, median and mode of haemoglobin measurements from
48 intensive care patients listed in Table 1

Measure Calculation

Mean The mean is the sum of the observations divided 
by the number of observations, in this case
5.4 + 6.4 + ... + 14.1 = 9.9 g/dl

48

Median There are 48 observations in this dataset and so 
the median is the average of the 24th and 25th 
(i.e. the average of 9.7 and 9.9 = 9.8 g/dl)

Mode Several values appear twice in this dataset, 
9.9 appears three times and 9.4 appears four 
times. No value appears more than four times and 
so the mode is 9.4 g/dl
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Example of calculating variability

Table 3 shows the calculation of the range, interquartile range
and standard deviation of the data shown in Table 1. The
range, from 5.4 to 14.1 g/dl, indicates the full extent of the
data, but does not give any information regarding how the
remaining observations are distributed between these
extremes. For example, it may be that the lower value of
5.4 g/dl is an outlier and the remainder of the observations
are all over 10.0 g/dl, or that most values lie at the lower end
of the range with substantially fewer at the other extreme. It is
impossible to tell this from the range alone.

The interquartile range (which contains the central 50% of
the data) gives a better indication of the general shape of the
distribution, and indicates that 50% of all observations fall in
a rather narrower range (from 8.7 to 10.8 g/dl). In addition,
the median and mean both fall approximately in the centre of
the interquartile range, which suggests that the distribution is
reasonably symmetrical.

The standard deviation in isolation does not provide a great
deal of information, although it is sometimes expressed as a
percentage of the mean, known as the coefficient of variation.
However, it is often used to calculate another extremely
useful quantity known as the reference range; this will be
covered in more detail in the next article.

Common distributions and simple
transformations
Quantitative clinical data follow a wide variety of distributions,
but the majority are unimodal, meaning that the data has a
single (modal) peak with a tail on either side. The most
common of these unimodal distributions are symmetrical, as

shown in Fig. 2, with a peak in the centre of the data and
evenly balanced tails on the right and left.

However, not all unimodal distributions are symmetrical; some
are skewed with a substantially longer tail on one side. The
type of skew is determined by which tail is longer. A positively
skewed distribution has a longer tail on the right; in other
words the majority of values are relatively low with a smaller
number of extreme high values. Fig. 3 shows the admission
serum urea levels of 100 intensive care patients. The majority
have a serum urea level below 20 mmol/l, with a peak
between 4.0 and 7.9 mmol/l. However, an important minority
of patients have levels above 20 mmol/l and some have levels
as high as 60 mmol/l.

The mean of these data is 12.25 mmol/l (A) and the median is
9 mmol/l (B), as indicated in Fig. 3. In a positively skewed dis-
tribution the median will always be smaller than the mean
because the mean is strongly influenced by the extreme
values in the right-hand tail, and may therefore be less repre-
sentative of the data as a whole. However, it is possible to
transform data of this type in order to obtain a more represen-
tative mean value. This type of transformation is also useful
when statistical tests require data to be more symmetrically
distributed (see subsequent reviews in this series for details).
There is a wide range of transformations that can be used in
this context [2], but the most commonly used with positively
skewed data is the logarithmic transformation.

In a logarithmic transformation, every value in the dataset is
replaced by its logarithm. Logarithms are defined to a base,
the most common being base e (natural logarithms) or base
10. The end result of a logarithmic transformation is indepen-
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Table 3

Range, interquartile range and standard deviation of haemoglobin measurements from 48 intensive care patients listed in Table 1

Measure Calculation

Range The values in this dataset range from 5.4 to 14.1 g/dl

Interquartile range The median calculated in Table 2 splits the data into two equally sized groups. The lower and upper quartiles split the 
data into four equally sized groups (4 × 12) and are therefore most easily defined as the average of the 12th and 13th 
observations for the lower quartile and of the 36th and 37th observations for the upper quartile. In other words, the lower 
and upper quartiles are 8.7 and 10.8 g/dl, respectively. (There are more complicated methods for calculating the 
interquartile range [1], but these will not generally give markedly different results.)

Standard deviation (SD) Using the formula given above: 

SD
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dent of the base chosen, although the same base must be
used throughout. As an example, consider the data shown in
Fig. 3. Although the majority of values are below 20, there is
also an important number of values above this. Table 4 shows
a sample of the raw numbers along with their logarithmically
transformed values (to base e).

Notice that the differences between the raw values are
always the same (1), whereas the differences in the trans-
formed values are larger at the lower end of the scale (0.18
and 0.16) than at the upper end (0.02 and 0.01). The loga-
rithmic transformation stretches out the lower end and com-
presses the upper end of a distribution, with the result that
positively skewed data will tend to become more symmetrical
in shape. The transformed data from Fig. 3 are shown in
Fig. 4, in which it can be seen that there is a single peak at
around 2.4 with similar tails to the right and left.

Calculations and statistical tests can now be carried out on
the transformed data before converting the results back to
the original scale. For example, the mean of the transformed
serum urea data is 2.19. To transform this value back to the
original scale, the antilog (or exponential in the case of
natural, base e logarithms) is applied. This gives a ‘geometric
mean’ of 8.94 mmol/l on the original scale (C in Fig. 3), the
term ‘geometric’ indicating that calculations have been
carried out on the logarithmic scale. This is in contrast to the
standard (arithmetic) mean value (calculated on the original
scale) of 12.25 mmol/l (A in Fig. 3). Looking at Fig. 3, it is
clear that the geometric mean is more representative of the
data than the arithmetic mean.
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Figure 3

Histogram of admission serum urea levels from 100 intensive care
patients. A = mean; B = median; C = geometric mean.
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Table 4

Raw and logarithmically transformed serum urea levels

Raw values Transformed values

5 1.61

6 1.79

7 1.95
: :
: :

55 4.01

56 4.03

57 4.04

Figure 4

Logarithmically transformed admission serum urea levels from 100
intensive care patients.
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Figure 5

Admission arterial blood pH from 100 intensive care patients.
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Similarly, a negatively skewed distribution has a longer tail to
the left; in other words, the extreme values are at the lower
end of the scale. Fig. 5 shows a negatively skewed distribu-
tion of admission arterial blood pH from 100 intensive care
patients. In this case the mean will be unduly influenced by
the extreme low values and the median (which is always
greater than the mean in this setting) may be a more repre-
sentative measure. However, as in the positively skewed case
it is possible to transform this type of data in order to make it
more symmetrical, although the function used in this setting is
not the logarithm (for more details, see Kirkwood [2]).

Finally, it is possible that data may arise with more than one
(modal) peak. These data can be difficult to manage and it
may be the case that neither the mean nor the median is a
representative measure. However, such distributions are rare
and may well be artefactual. For example, a (bimodal) distribu-
tion with two peaks may actually be a combination of two uni-
modal distributions (such as hormone levels in men and
women). Alternatively, a (multimodal) distribution with multiple
peaks may be due to digit preference (rounding observations
up or down) during data collection, where peaks appear at
round numbers, for example peaks in systolic blood pressure
at 90, 100, 110, 120 mmHg, and so on. In such cases appro-
priate subdivision, categorization, or even recollection of the
data may be required to eliminate the problem.
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ICU=intensive care unit; SD=standard deviation; SE=standard error.
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In medical (and other) research there is generally some popu-
lation that is ultimately of interest to the investigator (e.g.
intensive care unit [ICU] patients, patients with acute respira-
tory distress syndrome, or patients who receive renal replace-
ment therapy). It is seldom possible to obtain information from
every individual in the population, however, and attention is
more commonly restricted to a sample drawn from it. The
question of how best to obtain such a sample is a subject
worthy of discussion in its own right and is not covered here.
Nevertheless, it is essential that any sample is as representa-
tive as possible of the population from which it is drawn, and
the best means of obtaining such a sample is generally
through random sampling. (For more details see Bland [1].)

Once a (representative) sample has been obtained it is
important to describe the data using the methods described
in Statistics review 1. However, interest is rarely focused on
the sample itself, but more often on the information that the
sample can provide regarding the population of interest.

The Normal distribution
Quantitative clinical data follow a wide range of distributions.
By far the most common of these is symmetrical and unimodal,
with a single peak in the middle and equal tails at either side.
This distinctive bell-shaped distribution is known as ‘Normal’ or
‘Gaussian’. Note that Normal in this context (written with an
upper case ‘N’) has no implications in terms of clinical normal-
ity, and is used purely to describe the shape of the distribution.

Strictly speaking, the theoretical Normal distribution is contin-
uous, as shown in Fig. 1. However, data such as those shown
in Fig. 2, which presents admission haemoglobin concentra-
tions from intensive care patients, often provide an excellent
approximation in practice.

There are many other theoretical distributions that may be
encountered in medical data, for example Binary or Poisson
[2], but the Normal distribution is the most common. It is
additionally important because it has many useful properties
and is central to many statistical techniques. In fact, it is not
uncommon for other distributions to tend toward the Normal
distribution as the sample size increases, meaning that it is
often possible to use a Normal approximation. This is the
case with both the Binary and Poisson distributions.

One of the most important features of the Normal distribution
is that it is entirely defined by two quantities: its mean and its
standard deviation (SD). The mean determines where the
peak occurs and the SD determines the shape of the curve.
For example, Fig. 3 shows two Normal curves. Both have the
same mean and therefore have their peak at the same value.
However, one curve has a large SD, reflecting a large amount
of deviation from the mean, which is reflected in its short,
wide shape. The other has a small SD, indicating that individ-
ual values generally lie close to the mean, and this is reflected
in the tall, narrow distribution.
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Abstract

The previous review in this series introduced the notion of data description and outlined some of the
more common summary measures used to describe a dataset. However, a dataset is typically only of
interest for the information it provides regarding the population from which it was drawn. The present
review focuses on estimation of population values from a sample.
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It is possible to write down the equation for a Normal curve
and, from this, to calculate the area underneath that falls
between any two values. Because the Normal curve is
defined entirely by its mean and SD, the following rules (rep-
resented by parts a–c of Fig. 4) will always apply regardless
of the specific values of these quantities: (a) 68.3% of the
distribution falls within 1 SD of the mean (i.e. between
mean – SD and mean + SD); (b) 95.4% of the distribution
falls between mean – 2 SD and mean + 2 SD; (c) 99.7% of
the distribution falls between mean – 3 SD and mean + 3
SD; and so on.

The proportion of the Normal curve that falls between other
ranges (not necessarily symmetrical, as here) and, alterna-
tively, the range that contains a particular proportion of the
Normal curve can both be calculated from tabulated values
[3]. However, one proportion and range of particular interest
is as follows (represented by part d of Fig. 4); 95% of the dis-
tribution falls between mean – 1.96 SD and mean + 1.96 SD.

The standard deviation and reference range
The properties of the Normal distribution described above
lead to another useful measure of variability in a dataset.
Rather than using the SD in isolation, the 95% reference
range can be calculated as (mean – 1.96 SD) to (mean + 1.96
SD), provided that the data are (approximately) Normally dis-
tributed. This range will contain approximately 95% of the
data. It is also possible to define a 90% reference range, a
99% reference range and so on in the same way, but conven-
tionally the 95% reference range is the most commonly used.

For example, consider admission haemoglobin concentra-
tions from a sample of 48 intensive care patients (see Statis-
tics review 1 for details). The mean and SD haemoglobin
concentration are 9.9 g/dl and 2.0 g/dl, respectively. The
95% reference range for haemoglobin concentration in these
patients is therefore:

(9.9 – [1.96 × 2.0]) to (9.9 + [1.96 × 2.0]) = 5.98 to 13.82 g/dl.

Thus, approximately 95% of all haemoglobin measurements
in this dataset should lie between 5.98 and 13.82 g/dl. Com-
paring this with the measurements recorded in Table 1 of
Statistics review 1, there are three observations outside this
range. In other words, 94% (45/48) of all observations are
within the reference range, as expected.

Figure 2

Admission haemoglobin concentrations from 2849 intensive care
patients.

Figure 3

Normal curves with small and large standard deviations (SDs).

Figure 1

The Normal distribution.



Now consider the data shown in Fig. 5. These are blood
lactate measurements taken from 99 intensive care patients
on admission to the ICU. The mean and SD of these mea-
surements are 2.74 mmol/l and 2.60 mmol/l, respectively,
corresponding to a 95% reference range of –2.36 to
+7.84 mmol/l. Clearly this lower limit is impossible because
lactate concentration must be greater than 0, and this arises
because the data are not Normally distributed. Calculating
reference ranges and other statistical quantities without first
checking the distribution of the data is a common mistake
and can lead to extremely misleading results and erroneous
conclusions. In this case the error was obvious, but this will
not always be the case. It is therefore essential that any
assumptions underlying statistical calculations are carefully
checked before proceeding. In the current example a simple
transformation (e.g. logarithmic) may make the data approxi-
mately Normal, in which case a reference range could legiti-
mately be calculated before transforming back to the original
scale (see Statistics review 1 for details).

Two quantities that are related to the SD and reference range
are the standard error (SE) and confidence interval. These

quantities have some similarities but they measure very differ-
ent things and it is important that they should not be confused.

From sample to population
As mentioned above, a sample is generally collected and cal-
culations performed on it in order to draw inferences regard-
ing the population from which it was drawn. However, this
sample is only one of a large number of possible samples that
might have been drawn. All of these samples will differ in
terms of the individuals and observations that they contain,
and so an estimate of a population value from a single sample
will not necessarily be representative of the population. It is
therefore important to measure the variability that is inherent
in the sample estimate. For simplicity, the remainder of the
present review concentrates specifically on estimation of a
population mean.

Consider all possible samples of fixed size (n) drawn from a
population. Each of these samples has its own mean and
these means will vary between samples. Because of this vari-
ation, the sample means will have a distribution of their own.
In fact, if the samples are sufficiently large (greater than
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Figure 4

Areas under the Normal curve. Because the Normal distribution is defined entirely by its mean and standard deviation (SD), the following rules
apply: (a) 68.3% of the distribution falls within 1 SD of the mean (i.e. between mean – SD and mean + SD); (b) 95.4% of the distribution falls
between mean – 2 SD and mean + 2 SD; (c) 99.7% of the distribution falls between mean – 3 SD and mean + 3 SD; and (d) 95% of the
distribution falls between mean – 1.96 SD and mean + 1.96 SD.



approximately 30 in practice) then this distribution of sample
means is known to be Normal, regardless of the underlying
distribution of the population. This is a very powerful result
and is a consequence of what is known as the Central Limit
Theorem. Because of this it is possible to calculate the mean
and SD of the sample means.

The mean of all the sample means is equal to the population
mean (because every possible sample will contain every indi-
vidual the same number of times). Just as the SD in a sample
measures the deviation of individual values from the sample
mean, the SD of the sample means measures the deviation of
individual sample means from the population mean. In other
words it measures the variability in the sample means. In
order to distinguish it from the sample SD, it is known as the
standard error (SE). Like the SD, a large SE indicates that
there is much variation in the sample means and that many lie
a long way from the population mean. Similarly, a small SE
indicates little variation between the sample means. The size
of the SE depends on the variation between individuals in the
population and on the sample size, and is calculated as
follows:

SE = σ/√n (1)

where σ is the SD of the population and n is the sample size.
In practice, σ is unknown but the sample SD will generally
provide a good estimate and so the SE is estimated by the
following equation:

SE = Sample SD/√n (2)

It can be seen from this that the SE will always be consider-
ably smaller than the SD in a sample. This is because there is
less variability between the sample means than between indi-
vidual values. For example, an individual admission haemoglo-

bin level of 8 g/dl is not uncommon, but to obtain a sample of
100 patients with a mean haemoglobin level of 8 g/dl would
require the majority to have scores well below average, and
this is unlikely to occur in practice if the sample is truly repre-
sentative of the ICU patient population.

It is also clear that larger sample sizes lead to smaller stan-
dard errors (because the denominator, √n, is larger). In other
words, large sample sizes produce more precise estimates of
the population value in question. This is an important point to
bear in mind when deciding on the size of sample required for
a particular study, and will be covered in greater detail in a
subsequent review on sample size calculations.

The standard error and confidence interval
Because sample means are Normally distributed, it should be
possible to use the same theory as for the reference range to
calculate a range of values in which 95% of sample means
lie. In practice, the population mean (the mean of all sample
means) is unknown but there is an extremely useful quantity,
known as the 95% confidence interval, which can be
obtained in the same way. The 95% confidence interval is
invaluable in estimation because it provides a range of values
within which the true population mean is likely to lie. The 95%
confidence interval is calculated from a single sample using
the mean and SE (derived from the SD, as described above).
It is defined as follows: (sample mean – 1.96 SE) to (sample
mean + 1.96 SE).

To appreciate the value of the 95% confidence interval, con-
sider Fig. 6. This shows the (hypothetical) distribution of
sample means centred around the population mean. Because
the SE is the SD of the distribution of all sample means,
approximately 95% of all sample means will lie within 1.96
SEs of the (unknown) population mean, as indicated by the
shaded area. A 95% confidence interval calculated from a
sample with a mean that lies within this shaded area (e.g.
confidence interval A in Fig. 6) will contain the true population
mean. Conversely, a 95% confidence interval based on a
sample with a mean outside this area (e.g. confidence interval
B in Fig. 6) will not include the population mean. In practice it
is impossible to know whether a sample falls into the first or
second category; however, because 95% of all sample
means fall into the shaded area, a confidence interval that is
based on a single sample is likely to contain the true popula-
tion mean 95% of the time. In other words, given a 95% con-
fidence interval based on a single sample, the investigator
can be 95% confident that the true population mean (i.e. the
real measurement of interest) lies somewhere within that
range. Equally important is that 5% of such intervals will not
contain the true population value. However, the choice of
95% is purely arbitrary, and using a 99% confidence interval
(calculated as mean ± 2.56 SE) instead will make it more
likely that the true value is contained within the range.
However, the cost of this change is that the range will be
wider and therefore less precise.
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Figure 5

Lactate concentrations in 99 intensive care patients.



As an example, consider the sample of 48 intensive care
patients whose admission haemoglobin concentrations are
described above. The mean and SD of that dataset are
9.9 g/dl and 2.0 g/dl, respectively, which corresponds to a
95% reference range of 5.98 to 13.82 g/dl. Calculation of the
95% confidence interval relies on the SE, which in this case
is 2.0/√48 = 0.29. The 95% confidence interval is then:

(9.9 – [1.96 × 0.29]) to (9.9 + [1.96 × 0.29]) = 9.33 to 10.47 g/dl

So, given this sample, it is likely that the population mean
haemoglobin concentration is between 9.33 and 10.47 g/dl.
Note that this range is substantially narrower than the corre-
sponding 95% reference range (i.e. 5.98 to 13.82 g/dl; see
above). If the sample were based on 480 patients rather than
just 48, then the SE would be considerably smaller (SE =
2.0/√480 = 0.09) and the 95% confidence interval (9.72 to
10.08 g/dl) would be correspondingly narrower.

Of course a confidence interval can only be interpreted in the
context of the population from which the sample was drawn.
For example, a confidence interval for the admission haemo-
globin concentrations of a representative sample of postoper-
ative cardiac surgical intensive care patients provides a range
of values in which the population mean admission haemoglo-
bin concentration is likely to lie, in postoperative cardiac sur-
gical intensive care patients. It does not provide information

on the likely range of admission haemoglobin concentrations
in medical intensive care patients.

Confidence intervals for smaller samples
The calculation of a 95% confidence interval, as described
above, relies on two assumptions: that the distribution of
sample means is approximately Normal and that the popula-
tion SD can be approximated by the sample SD. These
assumptions, particularly the first, will generally be valid if the
sample is sufficiently large. There may be occasions when
these assumptions break down, however, and there are alter-
native methods that can be used in these circumstances. If
the population distribution is extremely non-Normal and the
sample size is very small then it may be necessary to use non-
parametric methods. (These will be discussed in a subse-
quent review.) However, in most situations the problem can
be dealt with using the t-distribution in place of the Normal
distribution.

The t-distribution is similar in shape to the Normal distribution,
being symmetrical and unimodal, but is generally more spread
out with longer tails. The exact shape depends on a quantity
known as the ‘degrees of freedom’, which in this context is
equal to the sample size minus 1. The t distribution for a
sample size of 5 (degrees of freedom = 4) is shown in com-
parison to the Normal distribution in Fig. 7, in which the
longer tails of the t-distribution are clearly shown. However,
the t-distribution tends toward the Normal distribution (i.e. it
becomes less spread out) as the degrees of freedom/sample
size increase. Fig. 8 shows the t-distribution corresponding to
a sample size of 20 (degrees of freedom = 19), and it can be
seen that it is already very similar to the corresponding
Normal curve.

Calculating a confidence interval using the t-distribution is
very similar to calculating it using the Normal distribution,
as described above. In the case of the Normal distribution,
the calculation is based on the fact that 95% of sample
means fall within 1.96 SEs of the population mean. The
longer tails of the t-distribution mean that it is necessary to
go slightly further away from the mean to pick up 95% of
all sample means. However, the calculation is similar, with
only the figure of 1.96 changing. The alternative multiplica-
tion factor depends on the degrees of freedom of the t-dis-
tribution in question, and some typical values are
presented in Table 1.

As an example, consider the admission haemoglobin concen-
trations described above. The mean and SD are 9.9 g/dl and
2.0 g/dl, respectively. If the sample were based on 10
patients rather than 48, it would be more appropriate to use
the t-distribution to calculate a 95% confidence interval. In
this case the 95% confidence interval is given by the follow-
ing: mean ± 2.26 SE. The SE based on a sample size of 10 is
0.63, and so the 95% confidence interval is 8.47 to
11.33 g/dl.
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Figure 6

The distribution of sample means. The shaded area represents the range
of values in which 95% of sample means lie. Confidence interval A is
calculated from a sample with a mean that lies within this shaded area,
and contains the true population mean. Confidence interval B, however,
is calculated from a sample with a mean that falls outside the shaded
area, and does not contain the population mean. SE=standard error.



Note that as the sample sizes increase the multiplication
factors shown in Table 1 decrease toward 1.96 (the multipli-
cation factor for an infinite sample size is 1.96). The larger
multiplication factors for smaller samples result in a wider
confidence interval, and this reflects the uncertainty in the
estimate of the population SD by the sample SD. The use of
the t-distribution is known to be extremely robust and will

therefore provide a valid confidence interval unless the popu-
lation distribution is severely non-Normal.

Standard deviation or standard error?
There is often a great deal of confusion between SDs and
SEs (and, equivalently, between reference ranges and confi-
dence intervals). The SD (and reference range) describes the
amount of variability between individuals within a single
sample. The SE (and confidence interval) measures the preci-
sion with which a population value (i.e. mean) is estimated by
a single sample. The question of which measure to use is well
summed up by Campbell and Machin [4] in the following
mnemonic: “If the purpose is Descriptive use standard Devia-
tion; if the purpose is Estimation use standard Error.”

Confidence intervals are an extremely useful part of any sta-
tistical analysis, and are referred to extensively in the remain-
ing reviews in this series. The present review concentrates on
calculation of a confidence interval for a single mean.
However, the results presented here apply equally to popula-
tion proportions, rates, differences, ratios and so on. For
details on how to calculate appropriate SEs and confidence
intervals, refer to Kirkwood [2] and Altman [3].

Key messages
The SD and 95% reference range describe variability within a
sample. These quantities are best used when the objective is
description.

The SE and 95% confidence interval describe variability
between samples, and therefore provide a measure of the
precision of a population value estimated from a single
sample. In other words, a 95% confidence interval provides a
range of values within which the true population value of inter-
est is likely to lie. These quantities are best used when the
objective is estimation.
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Table 1

Multiplication factors for confidence intervals based on the t-distribution

Sample size 10 20 30 40 50 200

Multiplication factor 2.26 2.09 2.05 2.02 2.01 1.97

Figure 7

The Normal and t (with 4 degrees of freedom) distributions.

Figure 8

The Normal and t (with 19 degrees of freedom) distributions.



AMI=acute myocardial infarction.
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The previous review in this series described how to use confi-
dence intervals to draw inferences about a population from a
representative sample. A common next step in data analysis
is calculation of P values, also known as hypothesis testing.
Hypothesis testing is generally used when some comparison
is to be made. This comparison may be a single observed
value versus some hypothesized quantity (e.g. the number of
babies born in a single delivery to mothers undergoing fertility
treatment as compared with typical singleton birth), or it may
be a comparison of two or more groups (e.g. mortality rates in
intensive care unit patients who require renal replacement
therapy versus those who do not). The choice of which statis-
tical test to use depends on the format of the data and the
study design. Examples of some of the more common tech-
niques will be covered in subsequent reviews. However, the
philosophy behind these statistical tests and the interpreta-
tion of the resulting P values are always the same, and it is
these ideas that are covered in the present review.

The null hypothesis
A typical research question is most easily expressed in terms
of there being some difference between groups. For example,
‘In patients with acute myocardial infarction (AMI), does the
administration of intravenous nitrate (as compared with none)
reduce mortality?’ To answer this question, the most appro-
priate study design would be a randomized controlled trial
comparing AMI patients who receive intravenous nitrate with
control patients. The challenge then is to interpret the results
of that study. Even if there is no real effect of intravenous

nitrate on mortality, sampling variation means that it is
extremely unlikely that exactly the same proportion of patients
in each group will die. Thus, any observed difference
between the two groups may be due to the treatment or it
may simply be a coincidence, in other words due to chance.
The aim of hypothesis testing is to establish which of these
explanations is most likely. Note that statistical analyses can
never prove the truth of a hypothesis, but rather merely
provide evidence to support or refute it.

To do this, the research question is more formally expressed
in terms of there being no difference. This is known as the null
hypothesis. In the current example the null hypothesis would
be expressed as, ‘The administration of intravenous nitrate
has no effect on mortality in AMI patients.’

In hypothesis testing any observed differences between two
(or more) groups are interpreted within the context of this null
hypothesis. More formally, hypothesis testing explores how
likely it is that the observed difference would be seen by
chance alone if the null hypothesis were true.

What is a P value?
There is a wide range of statistical tests available, depending
on the nature of the investigation. However, the end result of
any statistical test is a P value. The ‘P ’ stands for probability,
and measures how likely it is that any observed difference
between groups is due to chance. In other words, the P value
is the probability of seeing the observed difference, or
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greater, just by chance if the null hypothesis is true. Being a
probability, P can take any value between 0 and 1. Values
close to 0 indicate that the observed difference is unlikely to be
due to chance, whereas a P value close to 1 suggests there is
no difference between groups other than that due to random
variation. The interpretation of a P value is not always straight-
forward and several important factors must be taken into
account, as outlined below. Put simply, however, the P value
measures the strength of evidence against the null hypothesis.

Note that the aim of hypothesis testing is not to ‘accept’ or
‘reject’ the null hypothesis. Rather, it is simply to gauge how
likely it is that the observed difference is genuine if the null
hypothesis is true.

Interpreting P values
Continuing with the previous example, a number of trials of
intravenous nitrates in patients with AMI have been carried
out. In 1988 an overview of those that had been conducted
at that time was performed in order to synthesize all the avail-
able evidence [1]. The results from six trials of intravenous
nitrate are given in Table 1.

In the first trial (Chiche), 50 patients were randomly assigned
to receive intravenous nitrate and 45 were randomly assigned
to the control group. At the end of follow up, three of the 50
patients given intravenous nitrate had died versus eight in the
control group. The calculation and interpretation of odds
ratios will be covered in a future review. However, the inter-
pretation in this context is that the odds ratio approximately
represents the risk of dying in the nitrate group as compared
with that in the control group. The odds ratio can take any
positive value (above 0); in this context, values less than 1
indicate a protective effect of intravenous nitrate (a reduction
in risk of death in patients administered intravenous nitrate),
whereas an odds ratio greater than 1 points to a harmful
effect (i.e. an increase in risk of death in patients administered
intravenous nitrate). An odds ratio close to 1 is consistent
with no effect of intravenous nitrate (i.e. no difference
between the two groups). Interpretation of the confidence

intervals is just as described in Statistics review 2, with the
first confidence interval (Chiche) indicating that the true odds
ratio in the population from which the trial subjects were
drawn is likely to be between 0.09 and 1.13.

Initially ignoring the confidence intervals, five of the six trials
summarized in Table 1 have odds ratios that are consistent
with a protective effect of intravenous nitrate (odds ratio <1).
These range from a risk reduction of 17% (Flaherty) to one of
76% (Bussman). In other words, in the Bussman trial the risk
of dying in the nitrate group is about one-quarter of that in the
control group. The remaining trial (Jaffe) has an odds ratio of
2.04, suggesting that the effect of intravenous nitrate might
be harmful, with a doubling of risk in patients given this treat-
ment as compared with those in the control group.

The P values shown in the final column of Table 1 give an indi-
cation of how likely it is that these differences are simply due
to chance. The P value for the first trial (Chiche) indicates that
the probability of observing an odds ratio of 0.33 or more
extreme, if the null hypothesis is true, is 0.08. In other words, if
there is genuinely no effect of intravenous nitrate on the mor-
tality of patients with AMI, then 8 out of 100 such trials would
show a risk reduction of 66% or more just by chance. Equiva-
lently, 2 out of 25 would show such a chance effect. The
question of whether this is sufficiently unlikely to suggest that
there is a real effect is highly subjective. However, it is unlikely
that the management of critically ill patients would be altered
on the basis of this evidence alone, and an isolated result such
as this would probably be interpreted as being consistent with
no effect. Similarly the P value for the Bussman trial indicates
that 1 in 100 trials would have an odds ratio of 0.24 or more
extreme by chance alone; this is a smaller probability than in
the previous trial but, in isolation, perhaps still not sufficiently
unlikely to alter clinical care in practice. The P value of 0.70 in
the Flaherty trial suggests that the observed odds ratio of 0.83
is very likely to be a chance finding.

Comparing the P values across different trials there are two
main features of interest. The first is that the size of the P value

Table 1

Results from six trials of intravenous nitrates in acute myocardial infarction patients

Number dead/randomized

Trial Intravenous nitrate Control Odds ratio 95% confidence interval P value

Chiche 3/50 8/45 0.33 (0.09, 1.13) 0.08

Bussman 4/31 12/29 0.24 (0.08, 0.74) 0.01

Flaherty 11/56 11/48 0.83 (0.33, 2.12) 0.70

Jaffe 4/57 2/57 2.04 (0.39, 10.71) 0.40

Lis 5/64 10/76 0.56 (0.19, 1.65) 0.29

Jugdutt 24/154 44/156 0.48 (0.28, 0.82) 0.007
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is related, to some extent, to the size of the trial (and, in this
context, the proportion of deaths). For example, the odds ratios
in the Lis and Jugdutt trials are reasonably similar, both of which
are consistent with an approximate halving of risk in patients
given intravenous nitrate, but the P value for the larger Jugdutt
trial is substantially smaller than that for the Lis trial. This pattern
tends to be apparent in general, with larger studies giving rise to
smaller P values. The second feature relates to how the P
values change with the size of the observed effect. The Chiche
and Flaherty trials have broadly similar numbers of patients (in
fact, the numbers are somewhat higher in the Flaherty trial) but
the smaller P value occurs in the Chiche study, which suggests
that the effect of intravenous nitrate is much larger than that in
the Flaherty study (67% versus 17% reduction in mortality).
Again, this pattern will tend to hold in general, with more
extreme effects corresponding to smaller P values. Both of
these properties are discussed in considerably more detail in
the next review, on sample size/power calculations.

There are two additional points to note when interpreting P
values. It was common in the past for researchers to classify
results as statistically ‘significant’ or ‘non-significant’, based
on whether the P value was smaller than some prespecified
cut point, commonly 0.05. This practice is now becoming
increasingly obsolete, and the use of exact P values is much
preferred. This is partly for practical reasons, because the
increasing use of statistical software renders calculation of
exact P values increasingly simple as compared with the past
when tabulated values were used. However, there is also a
more pragmatic reason for this shift. The use of a cut-off for
statistical significance based on a purely arbitrary value such
as 0.05 tends to lead to a misleading conclusion of accepting
or rejecting the null hypothesis, in other words of concluding
that a ‘statistically significant’ result is real in some sense.
Recall that a P value of 0.05 means that one out of 20
studies would result in a difference at least as big as that
observed just by chance. Thus, a researcher who accepts a
‘significant’ result as real will be wrong 5% of the time (this is
sometimes known as a type I error). Similarly, dismissing an
apparently ‘non-significant’ finding as a null result may also be
incorrect (sometimes known as a type II error), particularly in
a small study, in which the lack of statistical significance may
simply be due to the small sample size rather than to any real
lack of clinical effect (see the next review for details). Both of
these scenarios have serious implications in terms of practi-
cal identification of risk factors and treatment of disease. The
presentation of exact P values allows the researcher to make
an educated judgement as to whether the observed effect is
likely to be due to chance and this, taken in the context of
other available evidence, will result in a far more informed
conclusion being reached.

Finally, P values give no indication as to the clinical impor-
tance of an observed effect. For example, suppose a new
drug for lowering blood pressure is tested against standard
treatment, and the resulting P value is extremely small. This

indicates that the difference is unlikely to be due to chance,
but decisions on whether to prescribe the new drug will
depend on many other factors, including the cost of the new
treatment, any potential contraindications or side effects, and
so on. In particular, just as a small study may fail to detect a
genuine effect, a very large study may result in a very small P
value based on a small difference of effect that is unlikely to
be important when translated into clinical practice.

P values and confidence intervals
Although P values provide a measure of the strength of an
association, there is a great deal of additional information to be
obtained from confidence intervals. Recall that a confidence
interval gives a range of values within which it is likely that the
true population value lies. Consider the confidence intervals
shown in Table 1. The odds ratio for the Chiche study is 0.33,
suggesting that the effect of intravenous nitrate is to reduce
mortality by two thirds. However, the confidence interval indi-
cates that the true effect is likely to be somewhere between a
reduction of 91% and an increase of 13%. The results from
that study show that there may be a substantial reduction in
mortality due to intravenous nitrate, but equally it is not possible
to rule out an important increase in mortality. Clearly, if the latter
were the case then it would be extremely dangerous to admin-
ister intravenous nitrate to patients with AMI.

The confidence interval for the Bussman study (0.08, 0.74)
provides a rather more positive picture. It indicates that,
although the reduction in mortality may be as little as 26%,
there is little evidence to suggest that the effect of intravenous
nitrate may be harmful. Administration of intravenous nitrate
therefore appears more reasonable based on the results of that
study, although the P value indicates a 1 in 100 probability that
this may be a chance finding and so the result in isolation might
not be sufficient evidence to change clinical practice.

The overview of those trials was carried out because the
results did not appear to be consistent, largely because the
individual trials were generally too small to provide reliable
estimates of effect. A pooled analysis of the data from all of
the nitrate trials shown in Table 1 (and including one other
trial with no deaths) was therefore conducted to obtain a
more robust estimate of effect (for details of the methods
used, see Yusuf et al. [1]). The odds ratios and 95% confi-
dence intervals for the individual trials in Table 1 are shown in
Fig. 1. The odds ratio for each trial is represented by a box,
the size of which is proportional to the amount of statistical
information available for that estimate, and the 95% confi-
dence interval is indicated by a horizontal line. The solid verti-
cal line indicates an odds ratio of 1.0; in other words it shows
the line of ‘no effect’. The combined odds ratio from all six
trials is indicated by the dashed vertical line, and its associ-
ated 95% confidence interval by the diamond at the bottom.

This pooled analysis resulted in an estimated overall odds ratio
of 0.53 with a 95% confidence interval of (0.36, 0.75),



suggesting a true reduction in mortality of somewhere
between one-quarter and two-thirds. Examination of the confi-
dence intervals from individual studies shows a high degree of
overlap with the pooled confidence interval, and so all of the
evidence appears to be consistent with this pooled estimate;
this includes the evidence from the Jaffe study, which, at first
glance, appears to suggest a harmful effect. The P value for
the pooled analysis was 0.0002, which indicates that the
result is extremely unlikely to have been due to chance.

Note that, since that meta-analysis was reported, treatment of
AMI patients has changed dramatically with the introduction of
thrombolysis. In addition, the Fourth International Study of
Infarct Survival (ISIS-4) [2], which randomized over 58,000
patients with suspected AMI, found no evidence to suggest
that mortality was reduced in those given oral nitrates. Thus, in
practice the indications for intravenous nitrates in patients with
AMI are restricted to symptom and blood pressure control.

Specific methods for comparing two or more means or pro-
portions will be introduced in subsequent reviews. In general,
these will tend to focus on the calculation of P values.
However, there is still much to be learned from examination of
confidence intervals in this context. For example, when com-
paring the risk for developing secondary infection following
trauma in patients with or without a history of chronic alcohol
abuse, it may be enlightening to compare the confidence
intervals for the two groups and to examine the extent to
which they do or do not overlap. Alternatively, it is possible to
calculate a confidence interval for the difference in two
means or the difference or ratio of proportions directly. This
can also give a useful indication of the likely effect of chronic
alcohol abuse, in particular by exploring the extent to which
the range of likely values includes or excludes 0 or 1, the
respective expected values of a difference or ratio if there is

no effect of chronic alcohol abuse, or in other words under
the null hypothesis.

Although P values provide a measure of the strength of an
association, an estimate of the size of any effect along with an
associated confidence interval is always required for mean-
ingful interpretation of results. P values and confidence inter-
vals are frequently calculated using similar quantities (see
subsequent reviews for details), and so it is not surprising
that the two are closely related. In particular, larger studies
will in general result in narrower confidence intervals and
smaller P values, and this should be taken into account when
interpreting the results from statistical analyses. Both P
values and confidence intervals have an important role to play
in understanding data analyses, and both should be pre-
sented wherever possible.

Key messages
A P value is the probability that an observed effect is simply
due to chance; it therefore provides a measure of the
strength of an association. A P value does not provide any
measure of the size of an effect, and cannot be used in isola-
tion to inform clinical judgement.

P values are affected both by the magnitude of the effect and
by the size of the study from which they are derived, and
should therefore be interpreted with caution. In particular, a
large P value does not always indicate that there is no associ-
ation and, similarly, a small P value does not necessarily
signify an important clinical effect.

Subdividing P values into ‘significant’ and ‘non-significant’ is
poor statistical practice and should be avoided. Exact P
values should always be presented, along with estimates of
effect and associated confidence intervals.
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Figure 1

Individual and combined odds ratios and 95% confidence intervals for
six intravenous nitrate trials.
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This article is the third in an ongoing, educational review
series on medical statistics in critical care. Previous articles
have covered ‘presenting and summarising data’ [3] and
‘samples and populations’ [4]. Future topics to be covered
include power calculations, comparison of means,
comparison of proportions, and analysis of survival data to
name but a few. If there is a medical statistics topic you
would like explained, contact us on editorial@ccforum.com.
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Previous reviews in this series introduced confidence inter-
vals and P values. Both of these have been shown to depend
strongly on the size of the study sample in question, with
larger samples generally resulting in narrower confidence
intervals and smaller P values. The question of how large a
study should ideally be is therefore an important one, but it is
all too often neglected in practice. The present review pro-
vides some simple guidelines on how best to choose an
appropriate sample size.

Research studies are conducted with many different aims in
mind. A study may be conducted to establish the difference,
or conversely the similarity, between two groups defined in
terms of a particular risk factor or treatment regimen. Alterna-
tively, it may be conducted to estimate some quantity, for
example the prevalence of disease, in a specified population
with a given degree of precision. Regardless of the motivation
for the study, it is essential that it be of an appropriate size to
achieve its aims. The most common aim is probably that of
determining some difference between two groups, and it is
this scenario that will be used as the basis for the remainder
of the present review. However, the ideas underlying the
methods described are equally applicable to all settings.

Power
The difference between two groups in a study will usually be
explored in terms of an estimate of effect, appropriate confi-
dence interval and P value. The confidence interval indicates
the likely range of values for the true effect in the population,

while the P value determines how likely it is that the observed
effect in the sample is due to chance. A related quantity is the
statistical power of the study. Put simply, this is the probabil-
ity of correctly identifying a difference between the two
groups in the study sample when one genuinely exists in the
populations from which the samples were drawn.

The ideal study for the researcher is one in which the power
is high. This means that the study has a high chance of
detecting a difference between groups if one exists; conse-
quently, if the study demonstrates no difference between
groups the researcher can be reasonably confident in con-
cluding that none exists in reality. The power of a study
depends on several factors (see below), but as a general rule
higher power is achieved by increasing the sample size.

It is important to be aware of this because all too often studies
are reported that are simply too small to have adequate power
to detect the hypothesized effect. In other words, even when a
difference exists in reality it may be that too few study subjects
have been recruited. The result of this is that P values are
higher and confidence intervals wider than would be the case
in a larger study, and the erroneous conclusion may be drawn
that there is no difference between the groups. This phenome-
non is well summed up in the phrase, ‘absence of evidence is
not evidence of absence’. In other words, an apparently null
result that shows no difference between groups may simply
be due to lack of statistical power, making it extremely unlikely
that a true difference will be correctly identified.
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Abstract

The present review introduces the notion of statistical power and the hazard of under-powered studies.
The problem of how to calculate an ideal sample size is also discussed within the context of factors
that affect power, and specific methods for the calculation of sample size are presented for two
common scenarios, along with extensions to the simplest case.
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Given the importance of this issue, it is surprising how often
researchers fail to perform any systematic sample size calcu-
lations before embarking on a study. Instead, it is not uncom-
mon for decisions of this sort to be made arbitrarily on the
basis of convenience, available resources, or the number of
easily available subjects. A study by Moher and coworkers [1]
reviewed 383 randomized controlled trials published in three
journals (Journal of the American Medical Association,
Lancet and New England Journal of Medicine) in order to
examine the level of statistical power in published trials with
null results. Out of 102 null trials, those investigators found
that only 36% had 80% power to detect a relative difference
of 50% between groups and only 16% had 80% power to
detect a more modest 25% relative difference. (Note that a
smaller difference is more difficult to detect and requires a
larger sample size; see below for details.) In addition, only
32% of null trials reported any sample size calculations in the
published report. The situation is slowly improving, and many
grant giving bodies now require sample size calculations to
be provided at the application stage. Many under-powered
studies continue to be published, however, and it is important
for readers to be aware of the problem.

Finally, although the most common criticism of the size, and
hence the power, of a study is that it is too low, it is also
worth noting the consequences of having a study that is too
large. As well as being a waste of resources, recruiting an
excessive number of participants may be unethical, particu-
larly in a randomized controlled trial where an unnecessary
doubling of the sample size may result in twice as many
patients receiving placebo or potentially inferior care, as is
necessary to establish the worth of the new therapy under
consideration.

Factors that affect sample size calculations
It is important to consider the probable size of study that will
be required to achieve the study aims at the design stage.
The calculation of an appropriate sample size relies on a sub-
jective choice of certain factors and sometimes crude esti-
mates of others, and may as a result seem rather artificial.
However, it is at worst a well educated guess, and is consid-
erably more useful than a completely arbitrary choice. There
are three main factors that must be considered in the calcula-
tion of an appropriate sample size, as summarized in Table 1.
The choice of each of these factors impacts on the final
sample size, and the skill is in combining realistic values for
each of these in order to achieve an attainable sample size.
The ultimate aim is to conduct a study that is large enough to
ensure that an effect of the size expected, if it exists, is suffi-
ciently likely to be identified.

Although, as described in Statistics review 3, it is generally
bad practice to choose a cutoff for statistical ‘significance’
based on P values, it is a convenient approach in the calcula-
tion of sample size. A conservative cutoff for significance, as
indicated by a small P value, will reduce the risk of incorrectly

interpreting a chance finding as genuine. However, in prac-
tice this caution is reflected in the need for a larger sample
size in order to obtain a sufficiently small P value. Similarly, a
study with high statistical power will, by definition, make iden-
tification of any difference relatively easy, but this can only be
achieved in a sufficiently large study. In practice there are
conventional choices for both of these factors; the P value for
significance is most commonly set at 0.05, and power will
generally be somewhere between 80% and 95%, depending
on the resulting sample size.

The remaining factor that must be considered is the size of
the effect to be detected. However, estimation of this quantity
is not always straightforward. It is a crucial factor, with a small
effect requiring a large sample and vice versa, and careful
consideration should be given to the choice of value. Ideally,
the size of the effect will be based on clinical judgement. It
should be large enough to be clinically important but not so
large that it is implausible. It may be tempting to err on the
side of caution and to choose a small effect; this may well
cover all important clinical scenarios but will be at the cost of
substantially (and potentially unnecessarily) increasing the
sample size. Alternatively, an optimistic estimate of the proba-
ble impact of some new therapy may result in a small calcu-
lated sample size, but if the true effect is less impressive than
expected then the resulting study will be under-powered, and
a smaller but still important effect may be missed.

Once these three factors have been established, there are
tabulated values [2] and formulae available for calculating the
required sample size. Certain outcomes and more complex
study designs may require further information, and calculation
of the required sample size is best left to someone with
appropriate expertise. However, specific methods for two
common situations are detailed in the following sections.

Note that the sample sizes obtained from these methods are
intended as approximate guides rather than exact numbers. In

Table 1

Factors that affect sample size calculations

Impact on identification Required 
Factor Magnitude of effect sample size

P value Small Stringent criterion; difficult Large
to achieve ‘significance’

Large Relaxed criterion; ‘significance’ Small
easier to attain

Power Low Identification unlikely Small

High Identification more probable Large

Effect Small Difficult to identify Large

Large Easy to identify Small



other words a calculation indicating a sample size of 100 will
generally rule out the need for a study of size 500 but not one
of 110; a sample size of 187 can be usefully rounded up to
200, and so on. In addition, the results of a sample size calcu-
lation are entirely dependent on estimates of effect, power
and significance, as discussed above. Thus, a range of values
should be incorporated into any good investigation in order to
give a range of suitable sample sizes rather than a single
‘magic’ number.

Sample size calculation for a difference in
means (equal sized groups)
Let us start with the simplest case of two equal sized
groups. A recently published trial [3] considered the effect of
early goal-directed versus traditional therapy in patients with
severe sepsis or septic shock. In addition to mortality (the
primary outcome on which the study was originally
powered), the investigators also considered a number of
secondary outcomes, including mean arterial pressure
6 hours after the start of therapy. Mean arterial pressure was
95 and 81 mmHg in the groups treated with early goal-
directed and traditional therapy, respectively, corresponding
to a difference of 14 mmHg.

The first step in calculating a sample size for comparing
means is to consider this difference in the context of the inher-
ent variability in mean arterial pressure. If the means are based
on measurements with a high degree of variation, for example
with a standard deviation of 40 mmHg, then a difference of
14 mmHg reflects a relatively small treatment effect compared
with the natural spread of the data, and may well be unremark-
able. Conversely, if the standard deviation is extremely small,
say 3 mmHg, then an absolute difference of 14 mmHg is con-
siderably more important. The target difference is therefore
expressed in terms of the standard deviation, known as the
standardized difference, and is defined as follows:

Target difference
Standardized difference = (1)

Standard deviation

In practice the standard deviation is unlikely to be known in
advance, but it may be possible to estimate it from other
similar studies in comparable populations, or perhaps from a
pilot study. Again, it is important that this quantity is estimated
realistically because an overly conservative estimate at the
design stage may ultimately result in an under-powered study.

In the current example the standard deviation for the mean
arterial pressure was approximately 18 mmHg, so the stan-
dardized difference to be detected, calculated using equation
1, was 14/18 = 0.78. There are various formulae and tabu-
lated values available for calculating the desired sample size
in this situation, but a very straightforward approach is pro-
vided by Altman [4] in the form of the nomogram shown in
Fig. 1 [5].

The left-hand axis in Fig. 1 shows the standardized difference
(as calculated using Eqn 1, above), while the right-hand axis
shows the associated power of the study. The total sample
size required to detect the standardized difference with the
required power is obtained by drawing a straight line
between the power on the right-hand axis and the standard-
ized difference on the left-hand axis. The intersection of this
line with the upper part of the nomogram gives the sample
size required to detect the difference with a P value of 0.05,
whereas the intersection with the lower part gives the sample
size for a P value of 0.01. Fig. 2 shows the required sample
sizes for a standardized difference of 0.78 and desired power
of 0.8, or 80%. The total sample size for a trial that is capable
of detecting a 0.78 standardized difference with 80% power
using a cutoff for statistical significance of 0.05 is approxi-
mately 52; in other words, 26 participants would be required
in each arm of the study. If the cutoff for statistical signifi-
cance were 0.01 rather than 0.05 then a total of approxi-
mately 74 participants (37 in each arm) would be required.

The effect of changing from 80% to 95% power is shown in
Fig. 3. The sample sizes required to detect the same standard-
ized difference of 0.78 are approximately 86 (43 per arm) and
116 (58 per arm) for P values of 0.05 and 0.01, respectively.

The nomogram provides a quick and easy method for deter-
mining sample size. An alternative approach that may offer
more flexibility is to use a specific sample size formula. An
appropriate formula for comparing means in two groups of
equal size is as follows:
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Figure 1

Nomogram for calculating sample size or power. Reproduced from
Altman [5], with permission.



2
n =            × cp,power (2)

d2

where n is the number of subjects required in each group, d
is the standardized difference and cp,power is a constant
defined by the values chosen for the P value and power.
Some commonly used values for cp,power are given in Table 2.
The number of participants required in each arm of a trial to
detect a standardized difference of 0.78 with 80% power
using a cutoff for statistical significance of 0.05 is as follows:

2
n =            × c0.05,80%

0.782

2
=            × 7.9

0.6084

= 2.39 × 7.9

= 26.0

Thus, 26 participants are required in each arm of the trial,
which agrees with the estimate provided by the nomogram.

Sample size calculation for a difference in
proportions (equal sized groups)
A similar approach can be used to calculate the sample size
required to compare proportions in two equally sized groups.

In this case the standardized difference is given by the follow-
ing equation:

(p1 – p2)
Standardized difference = (3)

√[p—(1 – p—)]

where p1 and p2 are the proportions in the two groups and
p— = (p1 + p2)/2 is the mean of the two values. Once the stan-
dardized difference has been calculated, the nomogram
shown in Fig. 1 can be used in exactly the same way to deter-
mine the required sample size.

As an example, consider the recently published Acute Respi-
ratory Distress Syndrome Network trial of low versus tradi-
tional tidal volume ventilation in patients with acute lung injury
and acute respiratory distress syndrome [6]. Mortality rates in
the low and traditional volume groups were 31% and 40%,
respectively, corresponding to a reduction of 9% in the low
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Figure 2

Nomogram showing sample size calculation for a standardized
difference of 0.78 and 80% power.

Table 2

Commonly used values for cp,power

Power (%)

P 50 80 90 95

0.05 3.8 7.9 10.5 13.0

0.01 6.6 11.7 14.9 17.8

Figure 3

Nomogram showing sample size calculation for a standardized
difference of 0.78 and 95% power.



volume group. What sample size would be required to detect
this difference with 90% power using a cutoff for statistical
significance of 0.05? The mean of the two proportions in this
case is 35.5% and the standardized difference is therefore as
follows (calculated using Eqn 3).

(0.40 – 0.31)           0.09
=              = 0.188

√[0.355(1 – 0.355)]     0.479

Fig. 4 shows the required sample size, estimated using the
nomogram to be approximately 1200 in total (i.e. 600 in each
arm).

Again, there is a formula that can be used directly in these cir-
cumstances. Comparison of proportions p1 and p2 in two
equally sized groups requires the following equation:

[p1(1 – p1) + p2 (1 – p2)]
n =                                          × cp,power (4)

(p1 – p2)2

where n is the number of subjects required in each group and
cp,power is as defined in Table 2. Returning to the example of
the Acute Respiratory Distress Syndrome Network trial, the
formula indicates that the following number of patients would
be required in each arm.

(0.31 × 0.69) + (0.40 × 0.60)
× 10.5 = 588.4

(0.31 – 0.40)2

This estimate is in accord with that obtained from the nomogram.

Calculating power
The nomogram can also be used retrospectively in much the
same way to calculate the power of a published study. The
Acute Respiratory Distress Syndrome Network trial stopped
after enrolling 861 patients. What is the power of the pub-
lished study to detect a standardized difference in mortality of
0.188, assuming a cutoff for statistical significance of 0.05?

The patients were randomized into two approximately equal
sized groups (432 and 429 receiving low and traditional tidal
volumes, respectively), so the nomogram can be used directly to
estimate the power. (For details on how to handle unequally
sized groups, see below.) The process is similar to that for
determining sample size, with a straight line drawn between the
standardized difference and the sample size extended to show
the power of the study. This is shown for the current example in
Fig. 5, in which a (solid) line is drawn between a standardized
difference of 0.188 and an approximate sample size of 861, and
is extended (dashed line) to indicate a power of around 79%.

It is also possible to use the nomogram in this way when
financial or logistical constraints mean that the ideal sample

size cannot be achieved. In this situation, use of the nomo-
gram may enable the investigator to establish what power
might be achieved in practice and to judge whether the loss
of power is sufficiently modest to warrant continuing with
the study.
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Figure 4

Nomogram showing sample size calculation for standardized
difference of 0.188 and 90% power.

Figure 5

Nomogram showing the statistical power for a standardized difference
of 0.188 and a total sample size of 861.



As an additional example, consider data from a published trial
of the effect of prone positioning on the survival of patients
with acute respiratory failure [7]. That study recruited a total
of 304 patients into the trial and randomized 152 to conven-
tional (supine) positioning and 152 to a prone position for 6 h
or more per day. The trial found that patients placed in a
prone position had improved oxygenation but that this was
not reflected in any significant reduction in survival at 10 days
(the primary end-point).

Mortality rates at 10 days were 21% and 25% in the prone
and supine groups, respectively. Using equation 3, this corre-
sponds to a standardized difference of the following:

(0.25 – 0.21)            0.04
=                = 0.095

√[0.23(1 – 0.23)]        0.421

This is comparatively modest and is therefore likely to require
a large sample size to detect such a difference in mortality
with any confidence. Fig. 6 shows the appropriate nomogram,
which indicates that the published study had only approxi-
mately 13% power to detect a difference of this size using a
cutoff for statistical significance of 0.05. In other words even
if, in reality, placing patients in a prone position resulted in an
important 4% reduction in mortality, a trial of 304 patients
would be unlikely to detect it in practice. It would therefore be
dangerous to conclude that positioning has no effect on mor-
tality without corroborating evidence from another, larger trial.
A trial to detect a 4% reduction in mortality with 80% power
would require a total sample size of around 3500 (i.e. approx-
imately 1745 patients in each arm). However, a sample size
of this magnitude may well be impractical. In addition to being
dramatically under-powered, that study has been criticized for
a number of other methodological/design failings [8,9]. Sadly,
despite the enormous effort expended, no reliable conclu-
sions regarding the efficacy of prone positioning in acute res-
piratory distress syndrome can be drawn from the trial.

Unequal sized groups
The methods described above assume that comparison is to
be made across two equal sized groups. However, this may
not always be the case in practice, for example in an observa-
tional study or in a randomized controlled trial with unequal
randomization. In this case it is possible to adjust the
numbers to reflect this inequality. The first step is to calculate
the total sample size (across both groups) assuming that the
groups are equal sized (as described above). This total
sample size (N) can then be adjusted according to the actual
ratio of the two groups (k) with the revised total sample size
(N′) equal to the following:

N(1 + k)2

N′ = (5)
4k

and the individual sample sizes in each of the two groups are
N′/(1 + k) and kN′/(1 + k).

Returning to the example of the Acute Respiratory Distress
Syndrome Network trial, suppose that twice as many patients
were to be randomized to the low tidal volume group as to
the traditional group, and that this inequality is to be reflected
in the study size. Fig. 4 indicates that a total of 1200 patients
would be required to detect a standardized difference of
0.188 with 90% power. In order to account for the ratio of
low to traditional volume patients (k = 2), the following
number of patients would be required.

1200 × (1 + 2)2 1200 × 9
N′ =                             =                    = 1350

4 × 2                      8

This comprises 1350/3 = 450 patients randomized to tradi-
tional care and (2 × 1350)/3 = 900 to low tidal volume venti-
lation.

Withdrawals, missing data and losses to
follow up
Any sample size calculation is based on the total number of
subjects who are needed in the final study. In practice, eligi-
ble subjects will not always be willing to take part and it will
be necessary to approach more subjects than are needed in
the first instance. In addition, even in the very best designed
and conducted studies it is unusual to finish with a dataset in
which complete data are available in a usable format for every
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Figure 6

Nomogram showing the statistical power for a standardized difference
of 0.095 and a total sample size of 304.



subject. Subjects may fail or refuse to give valid responses to
particular questions, physical measurements may suffer from
technical problems, and in studies involving follow up (e.g.
trials or cohort studies) there will always be some degree of
attrition. It may therefore be necessary to calculate the
number of subjects that need to be approached in order to
achieve the final desired sample size.

More formally, suppose a total of N subjects is required in the
final study but a proportion (q) are expected to refuse to partici-
pate or to drop out before the study ends. In this case the fol-
lowing total number of subjects would have to be approached
at the outset to ensure that the final sample size is achieved:

N
N′′ = (6)

(1 – q)

For example, suppose that 10% of subjects approached in
the early goal-directed therapy trial described above are
expected to refuse to participate. Then, considering the effect
on mean arterial pressure and assuming a P for statistical sig-
nificance of 0.05 and 80% power, the following total number
of eligible subjects would have to be approached in the first
instance:

52              52
N′′ =                 =              = 57.8

(1 – 0.1)        0.9

Thus, around 58 eligible subjects (approximately 29 in each
arm) would have to be approached in order to ensure the
required final sample size of 52 is achieved.

As with other aspects of sample size calculations, the propor-
tion of eligible subjects who will refuse to participate or
provide inadequate information will be unknown at the onset of
the study. However, good estimates will often be possible
using information from similar studies in comparable popula-
tions or from an appropriate pilot study. Note that it is particu-
larly important to account for nonparticipation in the costing of
studies in which initial recruitment costs are likely to be high.

Key messages
Studies must be adequately powered to achieve their aims,
and appropriate sample size calculations should be carried
out at the design stage of any study.

Estimation of the expected size of effect can be difficult and
should, wherever possible, be based on existing evidence and
clinical expertise. It is important that any estimates be large
enough to be clinically important while also remaining plausible.

Many apparently null studies may be under-powered rather
than genuinely demonstrating no difference between groups;
absence of evidence is not evidence of absence.
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This article is the fourth in an ongoing, educational review
series on medical statistics in critical care. Previous articles
have covered ‘presenting and summarizing data’, ‘samples
and populations’ and ‘hypotheses testing and P values’.
Future topics to be covered include comparison of means,
comparison of proportions and analysis of survival data, to
name but a few. If there is a medical statistics topic you
would like explained, contact us on editorial@ccforum.com.



ICU = intensive care unit; SD = standard deviation; SE = standard error.
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Previous reviews in this series have introduced the principals
behind the calculation of confidence intervals and hypothesis
testing. The present review covers the specific case of com-
paring means in rather more detail. Comparison of means
arises in many different formats, and there are various
methods available for dealing with each of these. Some of the
simpler cases are covered in this review, namely comparison
of a single observed mean with some hypothesized value,
comparison of two means arising from paired data, and com-
parison of two means from unpaired data. All of these com-
parisons can be made using appropriate confidence intervals
and t-tests as long as certain assumptions are met (see
below). Future reviews will introduce techniques that can be
used when the assumptions of the t-test are not valid or when
the comparison is between three or more groups.

Of the three cases covered in this review, comparison of
means from unpaired data is probably the most common.
However, the single mean and paired data cases are intro-
duced first because the t-test in these cases is more straight-
forward.

Comparison of a single mean with a
hypothesized value
This situation is not very common in practice but on occasion
it may be desirable to compare a mean value from a sample
with some hypothesized value, perhaps from external stan-
dards. As an example, consider the data shown in Table 1.
These are the haemoglobin concentrations of 15 UK adult

males admitted into an intensive care unit (ICU). The popula-
tion mean haemoglobin concentration in UK males is
15.0 g/dl. Is there any evidence that critical illness is associ-
ated with an acute anaemia?

The mean haemoglobin concentration of these men is
9.7 g/dl, which is lower than the population mean. However,
in practice any sample of 15 men would be unlikely to have a
mean haemoglobin of exactly 15.0 g/dl, so the question is
whether this difference is likely to be a chance finding, due to
random variation, or whether it is the result of some system-
atic difference between the men in the sample and those in
the general population. The best way to determine which
explanation is most likely is to calculate a confidence interval
for the mean and to perform a hypothesis test.

The standard deviation (SD) of these data is 2.2 g/dl, and so
a 95% confidence interval for the mean can be calculated
using the standard error (SE) in the usual way. The SE in this
case is 2.2/√15 = 0.56 and the corresponding 95% confi-
dence interval is as follows.

9.7 ± 2.14 × 0.56 = 9.7 ± 1.19 = (8.5, 10.9)

Note that the multiplier, in this case 2.14, comes from the
t distribution because the sample size is small (for a fuller
explanation of this calculation, see Statistics review 2 from this
series). This confidence interval gives the range of likely values
for the mean haemoglobin concentration in the population
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Abstract

The present review introduces the commonly used t-test, used to compare a single mean with a
hypothesized value, two means arising from paired data, or two means arising from unpaired data. The
assumptions underlying these tests are also discussed.
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from which these men were drawn. In other words, assuming
that this sample is representative, it is likely that the true mean
haemoglobin in the population of adult male patients admitted
to ICUs is between 8.5 and 10.9 g/dl. The haemoglobin con-
centration in the general population of adult men in the UK is
well outside this range, and so the evidence suggests that
men admitted to ICUs may genuinely have haemoglobin con-
centrations that are lower than the national average.

Exploration of how likely it is that this difference is due to
chance requires a hypothesis test, in this case the one
sample t-test. The t-test formally examines how far the esti-
mated mean haemoglobin of men admitted to ICU, in this
case 9.7 g/dl, lies from the hypothesized value of 15.0 g/dl.
The null hypothesis is that the mean haemoglobin concentra-
tion of men admitted to ICU is the same as the standard for
the adult male UK population, and so the further away the
sample mean is from this hypothesized value, the less likely it
is that the difference arose by chance.

The t statistic, from which a P value is derived, is as follows.

sample mean – hypothesized mean
t = (1)

SE of sample mean

In other words, t is the number of SEs that separate the
sample mean from the hypothesized value. The associated
P value is obtained by comparison with the t distribution intro-
duced in Statistics review 2, with larger t statistics (regard-
less of sign) corresponding to smaller P values. As previously
described, the shape of the t distribution is determined by the
degrees of freedom, which, in the case of the one sample
t-test, is equal to the sample size minus 1.

The t statistic for the haemoglobin example is as follows.

9.7 – 15.0       –5.3
t =                     =              = –9.54

0.56             0.56

In other words, the observed mean haemoglobin concentra-
tion is 9.54 SEs below the hypothesized mean. Tabulated

values indicate how likely this is to occur in practice, and for a
sample size of 15 (corresponding to 14 degrees of freedom)
the P value is less than 0.0001. In other words, it is extremely
unlikely that the mean haemoglobin in this sample would
differ from that in the general population to this extent by
chance alone. This may indicate that there is a genuine differ-
ence in haemoglobin concentrations in men admitted to the
ICU, but as always it is vital that this result be interpreted in
context. For example, it is important to know how this sample
of men was selected and whether they are representative of
all UK men admitted to ICUs.

Note that the P value gives no indication of the size of any dif-
ference; it merely indicates the probability that the difference
arose by chance. In order to assess the magnitude of any dif-
ference, it is essential also to have the confidence interval cal-
culated above.

Comparison of two means arising from
paired data
A special case of the one sample t-test arises when paired
data are used. Paired data arise in a number of different situa-
tions, such as in a matched case–control study in which indi-
vidual cases and controls are matched to each other, or in a
repeat measures study in which some measurement is made
on the same set of individuals on more than one occasion
(generally under different circumstances). For example,
Table 2 shows central venous oxygen saturation in 10
patients on admission and 6 hours after admission to an ICU.

The mean admission central venous oxygen saturation was
52.4% as compared with a mean of 59.2% after 6 hours, cor-

Table 1

Haemoglobin concentrations (g/dl) for 15 UK males admitted
into an intensive care unit

8.1 10.1 12.3

9.7 11.7 11.3

11.9 9.3 13.0

10.5 8.3 8.8

9.4 6.4 5.4

Table 2

Central venous oxygen saturation on admission and 6 h after
admission to an intensive care unit

Central venous oxygen saturation (%)

Subject On admission 6 h after admission Difference (%)

1 39.7 52.9 13.2

2 59.1 56.7 –2.4

3 56.1 61.9 5.8

4 57.7 71.4 13.7

5 60.6 67.7 7.1

6 37.8 50.0 12.2

7 58.2 60.7 2.5

8 33.6 51.3 17.7

9 56.0 59.5 3.5

10 65.3 59.8 –5.5

Mean 52.4 59.2 6.8
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responding to an increase of 6.8%. Again, the question is
whether this difference is likely to reflect a genuine effect of
admission and treatment or whether it is simply due to
chance. In other words, the null hypothesis is that the mean
central venous oxygen saturation on admission is the same as
the mean saturation after 6 hours. However, because the data
are paired, the two sets of observations are not independent
of each other, and it is important to account for this pairing in
the analysis. The way to do this is to concentrate on the dif-
ferences between the pairs of measurements rather than on
the measurements themselves.

The differences between the admission and post-admission
central venous oxygen saturations are given in the rightmost
column of Table 2, and the mean of these differences is
6.8%. In these terms, the null hypothesis is that the mean of
the differences in central venous oxygen saturation is zero.
The appropriate t-test therefore compares the observed mean
of the differences with a hypothesized value of 0. In other
words, the paired t-test is simply a special case of the single
sample t-test described above.

The t statistic for the paired t-test is as follows.

sample mean of differences – 0     
t =

SE of sample mean of differences

sample mean of differences
= (2)

SE of sample mean of differences

The SD of the differences in the current example is 7.5, and
this corresponds to a SE of 7.5/√10 = 2.4. The t statistic is
therefore t = 6.8/2.4 = 2.87, and this corresponds to a
P value of 0.02 (based on a t distribution with 10 – 1 = 9
degrees of freedom). In other words, there is some evidence
to suggest that admission to ICU and subsequent treatment
may increase central venous oxygen saturation beyond the
level expected by chance.

However, the P value in isolation gives no information about
the likely size of any effect. As indicated above, this is recti-
fied by calculating a 95% confidence interval from the mean
and SE of the differences. In this case the 95% confidence
interval is as follows.

6.8 ± 2.26 × 2.4 = 6.8 ± 5.34 = (1.4, 12.2)

This indicates that the true increase in central venous oxygen
saturation due to ICU admission and treatment in the popula-
tion is probably between 1.4% and 12.2%. The decision as
to whether this difference is likely to be important in practice
should be based on the statistical evidence in combination
with other relevant clinical factors. However, it is worth noting
that the confidence interval excludes 0 (the expected differ-

ence if the null hypothesis were true); thus, although the
increase may be small (1.4%), it is unlikely that the effect is to
decrease saturation.

Comparison of two means arising from
unpaired data
The most common comparison is probably that of two means
arising from unpaired data (i.e. comparison of data from two
independent groups). For example, consider the results from
a recently published trial that compared early goal-directed
therapy with standard therapy in the treatment of severe
sepsis and septic shock [1]. A total of 263 patients were ran-
domized and 236 completed 6 hours of treatment. The mean
arterial pressures after 6 hours of treatment in the standard
and early goal-directed therapy groups are shown in Table 3.

Note that the authors of this study also collected information
on baseline mean arterial pressure and examined the 6-hour
pressures in the context of these (using a method known as
analysis of covariance) [1]. In practice this is a more appropri-
ate analysis, but for illustrative purposes the focus here is on
6-hour mean arterial pressures only.

It appears that the mean arterial pressure was 14 mmHg
higher in the early goal-directed therapy group. The 95% con-
fidence intervals for the mean arterial pressure in the two
groups are as follows.

18
Standard therapy: 81 ± 1.96 ×          = 81 ± 3.23 = (77.8, 84.2)

√119

Early goal-directed               19
therapy:          95 ± 1.96 ×          = 95 ± 3.44 = (91.6, 98.4)

√117

There is no overlap between the two confidence intervals
and, because these are the ranges in which the true popula-
tion values are likely to lie, this supports the notion that there
may be a difference between the two groups. However, it is
more useful to estimate the size of any difference directly, and
this can be done in the usual way. The only difference is in
the calculation of the SE.

Table 3

Mean and standard deviation of mean arterial pressure

Mean arterial pressure (mmHg)

Standard Early goal-directed 
therapy therapy

Number of patients 119 117

Mean 81 95

Standard deviation 18 19



In the paired case attention is focused on the mean of the dif-
ferences; in the unpaired case interest is in the difference of
the means. Because the sample sizes in the unpaired case
may be (and indeed usually are) different, the combined SE
takes this into account and gives more weight to the larger
sample size because this is likely to be more reliable. The
pooled SD for the difference in means is calculated as follows:

(n1 – 1) × SD1
2 + (n2 – 1) × SD2

2

SDdifference = √ (3)
(n1 + n2 –2)

where SD1 and SD2 are the SDs in the two groups and n1
and n2 are the two sample sizes. The pooled SE for the differ-
ence in means is then as follows.

1     1
SEdifference = SDdifference × √ + (4)

n1 n2

This SE for the difference in means can now be used to cal-
culate a confidence interval for the difference in means and to
perform an unpaired t-test, as above.

The pooled SD in the early goal-directed therapy trial example
is:

(119 – 1) × 182 + (117 – 1) × 192

SDdifference = √ (119 + 117 – 2)

38,232 + 41,876
= √ = √ 342.34 = 18.50

234

and the corresponding pooled SE is:

1       1
SEdifference = 18.50 × √ +       = 18.50 × √0.008 + 0.009

119   117

= 18.50 × 0.13 = 2.41

The difference in mean arterial pressure between the early
goal-directed and standard therapy groups is 14 mmHg, with a
corresponding 95% confidence interval of 14 ± 1.96 × 2.41 =
(9.3, 18.7) mmHg. If there were no difference in the mean
arterial pressures of patients randomized to early goal-
directed and standard therapy then the difference in means
would be close to 0. However, the confidence interval
excludes this value and suggests that the true difference is
likely to be between 9.3 and 18.7 mmHg.

To explore the likely role of chance in explaining this differ-
ence, an unpaired t-test can be performed. The null hypothe-
sis in this case is that the means in the two populations are

the same or, in other words, that the difference in the means
is 0. As for the previous two cases, a t statistic is calculated.

difference in sample means
t =

SE of difference in sample means

A P value may be obtained by comparison with the t distribu-
tion on n1 + n2 – 2 degrees of freedom. Again, the larger the t
statistic, the smaller the P value will be.

In the early goal-directed therapy example t = 14/2.41 = 5.81,
with a corresponding P value less than 0.0001. In other
words, it is extremely unlikely that a difference in mean arterial
pressure of this magnitude would be observed just by chance.
This supports the notion that there may be a genuine differ-
ence between the two groups and, assuming that the random-
ization and conduct of the trial was appropriate, this suggests
that early goal-directed therapy may be successful in raising
mean arterial pressure by between 9.3 and 18.7 mmHg. As
always, it is important to interpret this finding in the context of
the study population and, in particular, to consider how readily
the results may be generalized to the general population of
patients with severe sepsis or septic shock.

Assumptions and limitations
In common with other statistical tests, the t-tests presented
here require that certain assumptions be made regarding the
format of the data. The one sample t-test requires that the data
have an approximately Normal distribution, whereas the paired
t-test requires that the distribution of the differences are
approximately Normal. The unpaired t-test relies on the
assumption that the data from the two samples are both Nor-
mally distributed, and has the additional requirement that the
SDs from the two samples are approximately equal.

Formal statistical tests exist to examine whether a set of data
are Normal or whether two SDs (or, equivalently, two vari-
ances) are equal [2], although results from these should
always be interpreted in the context of the sample size and
associated statistical power in the usual way. However, the t-
test is known to be robust to modest departures from these
assumptions, and so a more informal investigation of the data
may often be sufficient in practice.

If assumptions of Normality are violated, then appropriate
transformation of the data (as outlined in Statistics review 1)
may be used before performing any calculations. Similarly,
transformations may also be useful if the SDs are very differ-
ent in the unpaired case [3]. However, it may not always be
possible to get around these limitations; where this is the
case, there are a series of alternative tests that can be used.
Known as nonparametric tests, they require very few or very
limited assumptions to be made about the format of the data,
and can therefore be used in situations where classical
methods, such as t-tests, may be inappropriate. These
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methods will be the subject of the next review, along with a
discussion of the relative merits of parametric and nonpara-
metric approaches.

Finally, the methods presented here are restricted to the case
where comparison is to be made between one or two groups.
This is probably the most common situation in practice but it
is by no means uncommon to want to explore differences in
means across three or more groups, for example lung func-
tion in nonsmokers, current smokers and ex-smokers. This
requires an alternative approach that is known as analysis of
variance (ANOVA), and will be the subject of a future review.
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This article is the fifth in an ongoing, educational review
series on medical statistics in critical care. Previous
articles have covered ‘presenting and summarizing data’,
‘samples and populations’, ‘hypotheses testing and P
values’ and ‘sample size calculations’. Future topics to be
covered include comparison of proportions, simple
regression and analysis of survival data, to name but a few.
If there is a medical statistics topic you would like
explained, contact us on editorial@ccforum.com.



1ICU = intensive care unit; SvO2 = central venous oxygen saturation.
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Many statistical methods require assumptions to be made about
the format of the data to be analysed. For example, the paired t-
test introduced in Statistics review 5 requires that the distribu-
tion of the differences be approximately Normal, while the
unpaired t-test requires an assumption of Normality to hold sep-
arately for both sets of observations. Fortunately, these assump-
tions are often valid in clinical data, and where they are not true
of the raw data it is often possible to apply a suitable transforma-
tion. There are situations in which even transformed data may
not satisfy the assumptions, however, and in these cases it may
be inappropriate to use traditional (parametric) methods of
analysis. (Methods such as the t-test are known as ‘parametric’
because they require estimation of the parameters that define
the underlying distribution of the data; in the case of the t-test,
for instance, these parameters are the mean and standard devi-
ation that define the Normal distribution.)

Nonparametric methods provide an alternative series of statis-
tical methods that require no or very limited assumptions to be
made about the data. There is a wide range of methods that
can be used in different circumstances, but some of the more
commonly used are the nonparametric alternatives to the t-
tests, and it is these that are covered in the present review.

The sign test
The sign test is probably the simplest of all the nonparametric
methods. It is used to compare a single sample with some
hypothesized value, and it is therefore of use in those situa-
tions in which the one-sample or paired t-test might tradition-

ally be applied. For example, Table 1 presents the relative risk
of mortality from 16 studies in which the outcome of septic
patients who developed acute renal failure as a complication
was compared with outcomes in those who did not. The rela-
tive risk calculated in each study compares the risk of dying
between patients with renal failure and those without. A rela-
tive risk of 1.0 is consistent with no effect, whereas relative
risks less than and greater than 1.0 are suggestive of a bene-
ficial or detrimental effect of developing acute renal failure in
sepsis, respectively. Does the combined evidence from all 16
studies suggest that developing acute renal failure as a com-
plication of sepsis impacts on mortality?

Fig. 1 shows a plot of the 16 relative risks. The distribution of
the relative risks is not Normal, and so the main assumption
required for the one-sample t-test is not valid in this case.
Rather than apply a transformation to these data, it is conve-
nient to use a nonparametric method known as the sign test.

The sign test is so called because it allocates a sign, either
positive (+) or negative (–), to each observation according to
whether it is greater or less than some hypothesized value,
and considers whether this is substantially different from what
we would expect by chance. If any observations are exactly
equal to the hypothesized value they are ignored and
dropped from the sample size. For example, if there were no
effect of developing acute renal failure on the outcome from
sepsis, around half of the 16 studies shown in Table 1 would
be expected to have a relative risk less than 1.0 (a ‘negative’
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sign) and the remainder would be expected to have a relative
risk greater than 1.0 (a ‘positive’ sign). In this case only three
studies had a relative risk of less than 1.0 whereas 13 had a
relative risk above this value. It is not unexpected that the
number of relative risks less than 1.0 is not exactly 8; the

more pertinent question is how unexpected is the value of 3?
The sign test gives a formal assessment of this.

Formally the sign test consists of the steps shown in Table 2.
In this example the null hypothesis is that there is no increase
in mortality when septic patients develop acute renal failure.

Exact P values for the sign test are based on the Binomial
distribution (see Kirkwood [1] for a description of how and
when the Binomial distribution is used), and many statistical
packages provide these directly. However, it is also possible
to use tables of critical values (for example [2]) to obtain
approximate P values.

The counts of positive and negative signs in the acute renal
failure in sepsis example were N+ = 13 and N– = 3, and S
(the test statistic) is equal to the smaller of these (i.e. N–). The
critical values for a sample size of 16 are shown in Table 3. 
S is less than or equal to the critical values for P = 0.10 and
P = 0.05. However, S is strictly greater than the critical value
for P = 0.01, so the best estimate of P from tabulated values
is 0.05. In fact, an exact P value based on the Binomial distri-
bution is 0.02. (Note that the P value from tabulated values is
more conservative [i.e. larger] than the exact value.) In other
words there is some limited evidence to support the notion
that developing acute renal failure in sepsis increases mortal-
ity beyond that expected by chance. 

Note that the sign test merely explores the role of chance in
explaining the relationship; it gives no direct estimate of the
size of any effect. Although it is often possible to obtain non-
parametric estimates of effect and associated confidence
intervals in principal, the methods involved tend to be
complex in practice and are not widely available in standard
statistical software. This lack of a straightforward effect esti-
mate is an important drawback of nonparametric methods.

Figure 1

Relative risk of mortality associated with developing acute renal failure
as a complication of sepsis.
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Table 2

Steps required in performing the sign test

Step Details

1 State the null hypothesis and, in particular, the 
hypothesized value for comparison

2 Allocate a sign (+ or –) to each observation according to 
whether it is greater or less than the hypothesized 
value. (Observations exactly equal to the hypothesized 
value are dropped from the analysis)

3 Determine:
N+ = the number of observations greater than the 

hypothesized value
N– = the number of observations less than the 

hypothesized value
S = the smaller of N+ and N–

4 Calculate an appropriate P value

Table 1

Relative risk of mortality associated with developing acute
renal failure as a complication of sepsis

Study Relative risk Sign

1 0.75 –

2 2.03 +

3 2.29 +

4 2.11 +

5 0.80 –

6 1.50 +

7 0.79 –

8 1.01 +

9 1.23 +

10 1.48 +

11 2.45 +

12 1.02 +

13 1.03 +

14 1.30 +

15 1.54 +

16 1.27 +
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The sign test can also be used to explore paired data. Con-
sider the example introduced in Statistics review 5 of central
venous oxygen saturation (SvO2) data from 10 consecutive
patients on admission and 6 hours after admission to the
intensive care unit (ICU). The paired differences are shown in
Table 4. In this example, the null hypothesis is that there is no
effect of 6 hours of ICU treatment on SvO2. In other words,
under the null hypothesis, the mean of the differences
between SvO2 at admission and that at 6 hours after admis-
sion would be zero. In terms of the sign test, this means that
approximately half of the differences would be expected to be
below zero (negative), whereas the other half would be above
zero (positive).

In practice only 2 differences were less than zero, but the
probability of this occurring by chance if the null hypothesis is
true is 0.11 (using the Binomial distribution). In other words, it
is reasonably likely that this apparent discrepancy has arisen
just by chance. Note that the paired t-test carried out in Sta-
tistics review 5 resulted in a corresponding P value of 0.02,
which appears at a first glance to contradict the results of the
sign test. It is not necessarily surprising that two tests on the
same data produce different results. The apparent discrep-
ancy may be a result of the different assumptions required; in
particular, the paired t-test requires that the differences be

Normally distributed, whereas the sign test only requires that
they are independent of one another. Alternatively, the dis-
crepancy may be a result of the difference in power provided
by the two tests. As a rule, nonparametric methods, particu-
larly when used in small samples, have rather less power (i.e.
less chance of detecting a true effect where one exists) than
their parametric equivalents, and this is particularly true of the
sign test (see Siegel and Castellan [3] for further details).

The Wilcoxon signed rank test
The sign test is intuitive and extremely simple to perform.
However, one immediately obvious disadvantage is that it
simply allocates a sign to each observation, according to
whether it lies above or below some hypothesized value, and
does not take the magnitude of the observation into account.
Omitting information on the magnitude of the observations is
rather inefficient and may reduce the statistical power of the
test. An alternative that does account for the magnitude of the
observations is the Wilcoxon signed rank test. The Wilcoxon
signed rank test consists of five basic steps (Table 5).

To illustrate, consider the SvO2 example described above.
The sign test simply calculated the number of differences
above and below zero and compared this with the expected
number. In the Wilcoxon rank sum test, the sizes of the differ-
ences are also accounted for.

Table 6 shows the SvO2 at admission and 6 hours after
admission for the 10 patients, along with the associated
ranking and signs of the observations (allocated according to
whether the difference is above or below the hypothesized
value of zero). Note that if patient 3 had a difference in admis-
sion and 6 hour SvO2 of 5.5% rather than 5.8%, then that
patient and patient 10 would have been given an equal,
average rank of 4.5.

Available online http://ccforum.com/inpress/cc1820

Table 3

Critical values for the sign test with a sample size of 16

P value 0.10 0.05 0.01

Critical value 4 3 2

Table 4

Central venous oxygen saturation on admission and 6 hours
after admission

SvO2 (%)

Patient On admission 6 hours Difference Sign

1 39.7 52.9 13.2 +

2 59.1 56.7 –2.4 –

3 56.1 61.9 5.8 +

4 57.7 71.4 13.7 +

5 60.6 67.7 7.1 +

6 37.8 50.0 12.2 +

7 58.2 60.7 2.5 +

8 33.6 51.3 17.7 +

9 56.0 59.5 3.5 +

10 65.3 59.8 –5.5 –

SvO2 = central venous oxygen saturation.

Table 5

Steps required in performing the Wilcoxon signed rank test

Step Details

1 State the null hypothesis and, in particular, the 
hypothesized value for comparison

2 Rank all observations in increasing order of magnitude, 
ignoring their sign. Ignore any observations that are 
equal to the hypothesized value. If two observations 
have the same magnitude, regardless of sign, then 
they are given an average ranking

3 Allocate a sign (+ or –) to each observation according to 
whether it is greater or less than the hypothesized 
value (as in the sign test)

4 Calculate:
R+ = sum of all positive ranks
R– = sum of all negative ranks
R = smaller of R+ and R–

5 Calculate an appropriate P value
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The sums of the positive (R+) and the negative (R–) ranks are
as follows.

R+ = 2 + 3 + 5 + 6 + 7 + 8 + 9 + 10 = 50

R– = 1 + 4 = 5

Thus, the smaller of R+ and R– (R) is as follows.

R = R– = 5

As with the sign test, a P value for a small sample size such
as this can be obtained from tabulated values such as those
shown in Table 7. The calculated value of R (i.e. 5) is less
than or equal to the critical values for P = 0.10 and P = 0.05
but greater than that for P = 0.01, and so it can be concluded
that P is between 0.01 and 0.05. In other words, there is
some evidence to suggest that there is a difference between
admission and 6 hour SvO2 beyond that expected by chance.
Notice that this is consistent with the results from the paired
t-test described in Statistics review 5. P values for larger
sample sizes (greater than 20 or 30, say) can be calculated
based on a Normal distribution for the test statistic (see
Altman [4] for details). Again, the Wilcoxon signed rank test

gives a P value only and provides no straightforward estimate
of the magnitude of any effect.

The Wilcoxon rank sum or Mann–Whitney
test
The sign test and Wilcoxon signed rank test are useful non-
parametric alternatives to the one-sample and paired t-tests.
A nonparametric alternative to the unpaired t-test is given by
the Wilcoxon rank sum test, which is also known as the
Mann–Whitney test. This is used when comparison is made
between two independent groups. The approach is similar to
that of the Wilcoxon signed rank test and consists of three
steps (Table 8).

The data in Table 9 are taken from a pilot study that set out to
examine whether protocolizing sedative administration
reduced the total dose of propofol given. Patients were
divided into groups on the basis of their duration of stay. The
data presented here are taken from the group of patients who
stayed for 3–5 days in the ICU. The total dose of propofol
administered to each patient is ranked by increasing magni-
tude, regardless of whether the patient was in the protocol-
ized or nonprotocolized group. Note that two patients had
total doses of 21.6 g, and these are allocated an equal,
average ranking of 7.5. There were a total of 11 nonprotocol-
ized and nine protocolized patients, and the sum of the ranks
of the smaller, protocolized group (S) is 84.5.

Again, a P value for a small sample such as this can be
obtained from tabulated values. In this case the two individual
sample sizes are used to identify the appropriate critical
values, and these are expressed in terms of a range as shown
in Table 10. The range in each case represents the sum of
the ranks outside which the calculated statistic S must fall to
reach that level of significance. In other words, for a P value
below 0.05, S must either be less than or equal to 68 or
greater than or equal to 121. In this case S = 84.5, and so
P is greater than 0.05. In other words, this test provides no
evidence to support the notion that the group who received
protocolized sedation received lower total doses of propofol
beyond that expected through chance. Again, for larger
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Table 6

Central venous oxygen saturation on admission and 6 hours
after admission

SvO2 (%)

On At
Patient admission 6 hours Difference Rank Sign

2 59.1 56.7 –2.4 1 –

7 58.2 60.7 2.5 2 +

9 56.0 59.5 3.5 3 +

10 65.3 59.8 –5.5 4 –

3 56.1 61.9 5.8 5 +

5 60.6 67.7 7.1 6 +

6 37.8 50.0 12.2 7 +

1 39.7 52.9 13.2 8 +

4 57.7 71.4 13.7 9 +

8 33.6 51.3 17.7 10 +

Table 7

Critical values for the Wilcoxon signed rank test with a sample
size of 10

P value 0.10 0.05 0.01

Critical value 10 8 3

Table 8

Steps required in performing the Wilcoxon rank sum
(Mann–Whitney) test

Step Details

1 Rank all observations in increasing order of magnitude, 
ignoring which group they come from. If two 
observations have the same magnitude, regardless of 
group, then they are given an average ranking

2 Add up the ranks in the smaller of the two groups (S). If 
the two groups are of equal size then either one can 
be chosen

3 Calculate an appropriate P value
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sample sizes (greater than 20 or 30) P values can be calcu-
lated using a Normal distribution for S [4].

Advantages and disadvantages of
nonparametric methods
Inevitably there are advantages and disadvantages to non-
parametric versus parametric methods, and the decision
regarding which method is most appropriate depends very
much on individual circumstances. As a general guide, the
following (not exhaustive) guidelines are provided.

Advantages of nonparametric methods

Nonparametric methods require no or very limited assump-
tions to be made about the format of the data, and they may
therefore be preferable when the assumptions required for
parametric methods are not valid.

Nonparametric methods can be useful for dealing with unex-
pected, outlying observations that might be problematic with
a parametric approach.

Nonparametric methods are intuitive and are simple to carry
out by hand, for small samples at least.

Nonparametric methods are often useful in the analysis of
ordered categorical data in which assignation of scores to
individual categories may be inappropriate. For example, non-
parametric methods can be used to analyse alcohol con-
sumption directly using the categories never, a few times per
year, monthly, weekly, a few times per week, daily and a few
times per day. In contrast, parametric methods require scores
(i.e. 1–7) to be assigned to each category, with the implicit
assumption that the effect of moving from one category to the
next is fixed.

Disadvantages of nonparametric methods

Nonparametric methods may lack power as compared with
more traditional approaches [3]. This is a particular concern if
the sample size is small or if the assumptions for the corre-
sponding parametric method (e.g. Normality of the data) hold.

Nonparametric methods are geared toward hypothesis
testing rather than estimation of effects. It is often possible to
obtain nonparametric estimates and associated confidence
intervals, but this is not generally straightforward.

Tied values can be problematic when these are common, and
adjustments to the test statistic may be necessary.

Appropriate computer software for nonparametric methods
can be limited, although the situation is improving. In addition,
how a software package deals with tied values or how it
obtains appropriate P values may not always be obvious.
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This article is the sixth in an ongoing, educational review
series on medical statistics in critical care. Previous
articles have covered ‘presenting and summarizing data’,
‘samples and populations’, ‘hypotheses testing and P
values’, ‘sample size calculations’ and ‘comparison of
means’. Future topics to be covered include simple
regression, comparison of proportions and analysis of
survival data, to name but a few. If there is a medical
statistics topic you would like explained, contact us on
editorial@ccforum.com.

Table 9

Total propofol doses in patients with a 3 to 5 day stay in the
intensive care unit

Nonprotocolized group Protocolized group

Dose (g) Rank Dose (g) Rank

7.2 2 5.6 1

15.7 4 14.6 3

19.1 6 18.2 5

21.6 7.5 21.6 7.5

26.8 10 23.1 9

27.4 11 28.3 12

28.5 13 31.7 14

32.8 16 32.4 15

36.3 17 36.8 18

43.2 19

44.7 20

S = 84.5

Table 10

Critical values for the Wilcoxon rank sum test with sample
sizes of 9 and 11 

P value 0.05 0.01 0.001

Critical value 68–121 61–128 53–136
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